Question	Answer		Marks	
1(a)(i)	compound containing carbon and hydrogen only;		1	
(a)(ii)	_n H _{2n+2} ; C _n H _{2n} ;		2	
(b)(i)	mol C = $54.54/12$ or $4.5(45)$ and mol H = $9.09/1$ or 9.09 and mol O = $36.37/16$ or 2.27 ; C ₂ H ₄ O;		2	
(b)(ii)	$M_{\rm r}$ of C ₂ H ₄ O = 44; 88/44 = 2 therefore C ₄ H ₈ O ₂ ;		2	
(c)	methyl ethanoate;	ethyl methanoate;		4
	CH ₃ COOCH ₃ ;	HCOO ₂ H ₅ ;		
(d)	met propanoate;			1
(e)(i)	condens			1
(e)(ii)	/H ₂ O;			1
(e)(iii)	dicarboxylic acid or diacyl chloride; diol;		2	

Question	Answer	Marks
2(a)(i)	step 2 and it is electron gain/oxidation state decreases;	
(a)(ii)	(ion) and it accepts electrons/gets reduced/oxidation state decreases;	
(b)	prediction: the 'not covered' section will be black; the 'covered in thick card' section will be white/cream; the 'covered in thin card' section will be grey; explanation:	1 1 1
(c)(i)	carbon dioxide + water → glucose + oxygen reactants correct; products correct;	
(c)(ii)	chlo	1
(c)(iii)	one correct –O– link between rectangles; two correct glucose units with continuation bonds:	1
(c)(iv)	the reaction of glucose with oxygen to release (carbon dioxide and water and) energy; or the reaction of glucose in a biological system to release energy;	1

3	(a)	(i)	82.76/12 and 17.2(4)(/1) or evaluation: 6.89 / 6.9(0) and 17.2(4)	[1]
			C_2H_5	[1]
			OR 82.76/100 × 58 = 48 and 17.24/100 × 58 = 10 or evaluation i.e. 48 and 10	[1]
			C_2H_5	[1]
		(ii)	(C ₂ H ₅ =) 29	[1]
			$(58/29 = 2) C_4 H_{10}$	[1]
			OR: 82.76/100 × 58 = 48 and 17.24/100 × 58 = 10 or evaluation i.e. 48 and 10	[1]
			$48/12 = 4 \ 10/1 = 10$ (therefore) C ₄ H ₁₀	[1]
	(b)	(i)	C _n H _{2n}	[1]
		(ii)	CH ₂	[1]
	(c)	(co	ntains) double bond/triple bond/multiple bond(s)/not all bonds are single	[1]
		(contains) carbon and hydrogen only		[1]
	(d)	bromine / bromine water		
		no	change/stays brown/orange/yellow/red-brown or only changes in UV	[1]
		(bro	own/orange/yellow) to colourless/decolourised	

(e) (i) circle/brackets around any 2 consecutive carbon atoms in the main chain and all attached atoms

(ii) $CH_3CH_2CH=CH_2 / C_2H_5CH=CH_2$ (double bond must be shown) [1]

butene/but-1-ene

(iii)
$$(CH_3)_2C=CH_2/CH_3CH_{=}CHCH_3/(CH_2)_2CHCH_3/(CH_2)_4$$
 [1]

[Total:15]

[1]

4	(a	(i)	butanoic acid methanol	[1] [1]
		(ii)	number of moles of ethanoic acid = 0.1 number of moles of ethanol = 0.12(0) the limiting reagent is ethanoic acid number of moles of ethyl ethanoate formed = 0.1 maximum yield of ethyl ethanoate is 8.8 g	[1] [1] [1] [1] [1]
	(b)) correct ester linkage [1] two ester linkages (COND on M1) continuation (COND on M2)		[1] [1]
	(c))	add bromine water/bromine turns colourless remains brown/orange/reddish brown/yellow	[1] [1] [1]
			ALLOW: potassium manganate(VII) (acidic or alkaline) correct colour colourless/green or brown ppt stays pink/purple	[1] [1] [1]
		(ii)	ester 1 COND alkyl group is C. Herry which is NOT CraHee	[1]
			or $C_{17}H_{35}$ is C_nH_{2n+1} or less hydrogen	[1]
		(iii)	soap or (sodium) salt (of a carboxylic acid) or carboxylate	
			alcohol	[1]
				[Total: 17]

5	(a	(i)	enzymes (1)	[1]
		(ii)	reduces growth of microbes/rate of reproduction of microbes is lower/ microbes are dormant (1) fewer (enzymes) to decay food (1) OR enzymes less efficient at lower temperatures (1) slower reaction rate (1)	[2]
				[-]
	(b)	corr rest (oth	rect linkage (1) t of molecule correct and continuation shown (1) her product is) water (1)	[3]
	(c)	any phot light chlo carb (gluo	three from: tosynthesis (1) t/photochemical (1) prophyll/chloroplasts (1) pon dioxide and water needed (1) cose and) oxygen (1)	[3]
			זדן	otal: 9]